Design of a Personal Fire Escape System

May 12, 2020

Jamaal Lake, Jhun Martinez, Alisa Mizukami, Bajinder Singh, Misbah Syeda, Zhixuan Zhao

Agenda

- 1. Personal Fire Escape System
- 2. Conceptual Design: How will it work?
- 3. The Braking System

(Lever, Hard brake, FEM...etc)

- 4. Spring, spring cups and brake pads
- 5. Rope, Carabiner and Harness
- 6. Manufacturing Plans
- 7. Testing Plans
- 8. Conclusion

What is the problem?

• After 9/11, engineers realized that buildings need better evacuation systems

• Although modern evacuation systems are efficient, they still take a long time to get people out

Our solution: Personal Fire Escape System

Quick, portable fire escape system through a window

What is in the box?

- 1. Braking system
- 2. Carabiners
- 3. Hook: needs to be installed by user
- 4. Harness
- 5. Instruction guide

Major Requirements

- Maximum weight limit is 250 lbs
- Maximum descent height is 100 ft (10 stories)
- Maximum descent speed of 3 ft/s

(at ground in 33 seconds)

• Very easy to read instruction on the hermetic box

 \rightarrow No more than 4 sentences to read

Free body diagram

What is our solution?

What is our solution?

Lever Animation

Design of Lever (3D Model)

Lever Material

Aluminum 6061-T6, T651

- Cheaper than steel
- Lighter than steel
- Corrosion-resistant

Finite Element Analysis on Lever: But Why?

The purpose of FEA is to conduct a virtual test

FEA on Lever: Boundary Conditions?

FEA on Lever: Boundary Conditions?

FEA on Lever: Displacement Test

51	mm)
	1.998e-02
ł,	1.834e-02
-1	1.670e-02
-	1.505e-02
-	1.341e-02
-	1.177e-02
-	1.013e-02
-	8.486e-03
	6.844e-03
2	5.202e-03
	3.560e-03
-	1.918e-03
	2.759e-04

As expected!

FEA on Lever: Displacement Test

FEA on Lever: Stress Test

FEA on Lever: Stress Convergence

FEA on Lever: Stress Convergence

FEA on Lever: Failure Criterion

- Yield Strength of Aluminum 6061 = 255 MPa
- Chosen factor of safety = 5
- Therefore, the allowable stress is 255 MPa / 5 =

51 MPa

FEA on Lever: Failure Criterion

- FEM Maximum Stress = 9.5 MPa
- Allowable stress = 51 MPa
- Therefore,

maximum stress < allowable stress

Design of Spring for Lever

Modified Design of Springs for Hard-brake

Spring specifications for lever and hard-brake

MATERIAL	OIL-TEMPERED A229	
SPRING CONSTANT	27.2 N/MM	
END TYPE	CLOSED AND GROUND	
WIRE DIAMETER	8 MM	
OUTER DIAMETER	80 MM	
INNER DIAMETER	64 MM	
FREE LENGTH	110 MM	
SOLID LENGTH	48 MM	
ACTIVE COILS	4	
TURNS	6	

How do we hold the springs in place?

Using spring cups!

Brake Pads

Brake Pads

Organic brake pads:

- Widely available: made of materials such as rubber and fiber
- Relatively inexpensive
- Reasonable wear and tear life cycle

	Ceramic	Organic	Semi Metallic	Non Metallic
Availability 1 = hard, 4 = easy to find	3	4	2	1
Cost 1 = expensive, 4 = cheap	1	4	3	2
Loudness 1 = Loud, 4 = Quiet	4	3	1	2
Fatigue 1 = wears down fast, 4 = hard to wear down	4	3	2	1
Fireproof 1 = bad performance 4 = good performance	2	3	4	1
Total /20	14	17	12	7

Design of Hard Brake System

Designed to keep the system stationary

1/4 " Diameter:	Nylon 6	Technora	Galv. Steel
Availability 1 = hard to find, 3 = easy to find	3	1	2
Elastic Modulus 1 = weak, 3 = strong	2	1	3
Cost 1 = expensive, 3 = cheap	3	1	2
Weight 1 = heavy, 3 = light	3	2	1
Heat Resistance 1 = low , 3 = high resistance	2	3	1
Ease of Attachment 1 = hard , 3 = easy	3	2	1
Total /18	16	10	10

Rope Diameter

Rope Diameter		Minimum Breaking Strength	
(in)	(mm)	(lb _f)	(kN)
3/16	5	880	3.91
1/4	6	1486	6.61
5/16	8	2295	10.2

Rope Summary

- Nylon
- ¼ inch diameter and 100 feet long
- Able to absorb dynamic load of 1000 lbf

Pre-installed hook

- Easy to install
- Able to withstand a dynamic load of 1000 lbf

90mm/3.54"

Carabiner

Carabiner: Shapes

	Oval	D	Modified D	Pear
Availability 1 = hard to find, 4 = easy to find	4	2	3	1
Cost 1 = expensive, 4 = cheap	4	2	3	1
Strength 1 = weak, 4 = strong	1	4	3	2
Weight 1 = heavy, 4 = light	3	1	4	2
Ease of clipping 1 = hard to clip, 4 = easy to clip	2	1	3	4
Total /20	14	10	16	10

Carabiner Gates

	Straight	Wire	Screw	Auto-lock
Availability 1 = hard to find, 4 = easy to find	1	2	4	3
Cost 1 = expensive, 4 = cheap	2	3	4	1
Safety (x3 weight) 1 = not safe, 4 = safe	2 x 3	1 x 3	3 x 3	4 x 3
Ease of opening 1 = hard to open, 4 = easy to open	4	3	1	2
Ease of locking 1 = hard to lock, 4 = easy to lock	N/A	N/A	3	4
Total /28	13	11	21	22

Carabiner Summary

Modified D-Shape

• Auto-lock

Harness

- Easy to put on
- Able to withstand 1000 lbf

Summary of Braking System

Personal Fire Escape System CAD Model

Personal Fire Escape System CAD Model

Overall Dimensions

Overall size:

19" x 15.7" x 12"

Overall Dimensions

Summary: How will it work?

Summary: How will it work?

Manufacturing

Manufacturing Plans

CNC milling machine the bell crank lever

Manufacturing Plans

• Welding machine (housing)

• Purchasing parts online

Product Name	Product Cost	Manufacturing	Purchasing
Lever	\$94.65	Yes	No
Pins for Lever	\$27.74	No	Yes
3 Springs	3 X \$28.49 = \$85.47	No	Yes
Brake Pads	\$50.00	No	Yes
Rope and Spool	\$39.00	No	Yes
SpeedClock App	\$1.99	No	Yes
Harness	\$86.90	No	Yes
Carabiners (2)	\$0.00	No	Yes
Hook	\$4.30	No	Yes
Coating	\$12.57	No	Yes
Spring Cups	\$20.00	Yes	No
Rail	\$60.00	Yes	No

Cost Analysis

TOTAL:

\$482.62 < \$500 Budget

Manufacturing Summary

Total manufacturing time: 8 weeks

Total manufacturing cost: \$482.62

How do we test our product?

- 1. Lever and Spring Testing
- 2. Hard-brake System Testing
- 3. Pre-Installed Hook and Rope Testing
- 4. Final Product Testing

Lever and Spring Testing

Weight (Ibs)	Did the lever fail?	Spring Displacement (mm)	Reached Solid Length?
25			
50			
150			
200			
250			

Hard-brake System Testing

Weight (Ibs)	Does the weight descend or stay at rest?	Was it easy to deactivate the brake?
50		
100		
150		
200		
250		

Pre-installed Hook and Rope Testing

Weight (lbs)	Did the hook fail?	Did the rope fail?
50		
100		
150		
200		
250		

Final Product Testing

How do we track speed?
SpeedClock App

- Cheap (\$1.99)
- Easy to use
- Simply follow the object to measure its speed

Height (Building Stories)	Object speed (ft/s)
1st	
2nd	
3rd	
4th	
5th	
6th	
7th	
8th	
9th	
10th	

Testing Summary

Total testing time: 2 weeks

Total testing cost: \$1.99

Problems & Concerns

Brake Pads:

• Will the brake pads burn out due to a constant brake being applied by the user?

Ventilation System

- How much heat is being dissipated in the housing due to friction?
- Do we need to add more ventilation to the system if the brake pads are inadequately affected by a constant brake?

What's next?

- Think of ways to reduce the number of springs used
- Work on reducing the overall dimensions of the system
- Automatic deactivation of the hard-brake system

Website Link

For more detailed information about our Personal Fire Escape System, check out our website at:

https://amizuka000.github.io/fireescape/

Thank you to:

Professor La Grotta

Questions?

References

- 1. Bhandari, V. B. *Design of Machine Elements*. McGraw-Hill Education (India), 2017.
- 2. *McMaster*, www.mcmaster.com/aluminum-alloy-6061/.
- 3. "Nylon Rope Strength." *Engineering ToolBox*, www.engineeringtoolbox.com/nylon-rope-strength-d_1513.html.
- 4. "Online Materials Information Resource." *MatWeb*, www.matweb.com/.
- 5. "Spring Calculator & Instant Quote." *Quality Spring, Affordable Prices*, www.acxesspring.com/spring-calculator.html.